Received 13 August 2006 Accepted 14 August 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shu-Ping Yang,^a* Li-Jun Han,^b Da-Qi Wang^c and Hai-Tao Xia^a

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: yangshuping@hhit.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.005 Å R factor = 0.055 wR factor = 0.143 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*,*E*)-4-(Dimethylamino)benzaldehyde O-(3-phenylpropenoyl)oxime

In the title compound, $C_{18}H_{18}N_2O_2$, the molecules are linked into a chain of $R_2^1(6)$ rings by weak intermolecular $C-H\cdots O$ interactions; these chains are linked by $C-H\cdots O$ and $C-H\cdots N$ weak interactions, resulting in the formation of a threedimensional network.

Comment

Oxime ester derivativies exhibit a large number of biological activities, such as herbicidal (Suk *et al.*,1997) and anti-TMV activity (Yang *et al.*, 2005; Ma *et al.*, 1999). The crystal structures of various oxime ester derivatives (Brito-Arias *et al.*, 2004; Ohba *et al.*, 2005) have been decribed. We report here the molecular structure of a new oxime ester, (E,E)-4-dimethylaminobenzadehyde O-(3-phenylpropenoyl)oxime, (I).

In the molecule of (I) (Fig. 1), the 4-dimethylaminobenzaldehyde and 3-phenylpropenoyloxy groups are situated on opposite sides of the C=N bond, and the 4-dimethylaminobenzaldehyde oxime and phenyl groups are situated on opposite sides of the C=C bond, resulting in a *trans* configuration (*E,E*). The dihedral angle between the benzene rings is 34.83 (5)°. The O1-N1 bond length corresponds with the mean value for the -O-N= distance in oximes (Allen *et al.*, 1987). All other distances are also typical of their types (Table 1).

The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 1

Figure 2

Part of the crystal structure of (I), showing the formation of a $C(6)C(8)[R_2^1(6)]$ chain of rings along *b* axis. For the sake of clarity, H atoms not involved in the motif shown have been omitted. [Symmety codes: (*) x, 1 + y, z; (#) x, -1 + y, z.] Dashed lines indicate hydrogen bonds.

Part of the crystal structure of (I), viewed down the *b* axis, showing molecular chains linked by two weak C-H···O and one C-H···N interactions [symmety codes: $(*)\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z;$ $(\#)\frac{1}{2} - x, \frac{3}{2} - y, 1 - z$, (&) -x, 2 - y, 1 - z]. Dashed lines indicate hydrogen bonds.

In the crystal structure of (I), molecules are linked into a $C(6)C(8)[R_2^1(6)]$ chain of rings (Bernstein *et al.*,1995) along the *b* axis through two weak intermolecular C-H···O interactions (C10-H10···O2ⁱⁱ and C16-H16···O2ⁱⁱ; Fig. 2 and Table 2). Atom O2 acts as a bifurcated acceptor, and atoms C10 and C16 in the molecule at (x, y, z) act as hydrazone-bond donors to atom O2 in the molecule at (x, -1 + y, z). Neighboring chains of molecules are connected by two C-H···O [C8-H8···O2ⁱ and C10-H10···O1ⁱⁱ; symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$], and one C-H···N [C17-H17···N1^{iv}; symmetry code: (iv) -x, -y + 2, -z + 1] weak intermolecular interactions (Fig. 3 and Table 2), resulting in a three-dimensional network structure (Fig. 4).

The packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

Experimental

To a solution containing 4-(dimethylamino)benzadehydeoxime (1.60 g, 10 mmol) and anhydrous pyridine (10 ml), a solution of 3phenylpropenoyl chloride (1.75 g, 10 mmol) and anhydrous chloroform (10 ml) was slowly added at 278–283 K with stirring for 30 min. The reaction mixture was stirred continuously for 12 h at room temperature and then poured into ice–water (200 ml). The resulting solid was filtered, washed with water and dried at room temperature. Yellow crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from ethanol (m.p. 415– 416 K).

Crystal data

$C_{18}H_{18}N_2O_2$	Z = 8
$M_r = 294.34$	$D_x = 1.242 \text{ Mg m}^{-3}$
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 23.88 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 6.406 (6) Å	T = 298 (2) K
c = 21.41 (2) Å	Plate, yellow
$\beta = 106.092 \ (14)^{\circ}$	$0.58 \times 0.31 \times 0.09 \text{ mm}$
$V = 3147 (5) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)

 $T_{\min} = 0.954, T_{\max} = 0.993$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.143$ S = 1.002781 reflections 199 parameters 7760 measured reflections 2781 independent reflections 1160 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.070$ $\theta_{\text{max}} = 25.0^{\circ}$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1	
Selected geometric parameters (Å, °).	

N1-C10	1.266 (4)	N1-O1	1.453 (3)		
C10-N1-O1	108.7 (3)	C1-O1-N1	113.5 (2)		
C10-N1-O1-C1 N1-O1-C1-O2	-178.2 (3) 7.3 (5)	N1-O1-C1-C2	-172.9 (2)		

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
C8-H8···O2 ⁱ	0.93	3.12	3.961 (5)	151	
C10-H10···O1 ⁱⁱ	0.93	3.14	3.737 (5)	123	
C10−H10···O2 ⁱⁱⁱ	0.93	2.46	3.275 (5)	147	
C16-H16···O2 ⁱⁱⁱ	0.93	2.78	3.530 (4)	139	
$C17-H17C \cdot \cdot \cdot N1^{iv}$	0.96	3.01	3.817 (5)	142	

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) x, y - 1, z; (iv) -x, -y + 2, -z + 1.

All H atoms were positioned geometrically and refined as riding on their parent atoms, with C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}$ for methyl H atoms, and C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}$ for all other H atoms.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to

solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support from the Huaihai Institute of Technology Science Foundation.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555–1573.
- Brito-Arias, M. A., García-Báez, E. V., del Toro, G. V. & Höpfl, H. (2004). Acta Cryst. E60, 01451–01452.
- Ma, Z.-H., Shao, R.-L., Ma, H.-M., Cheng, J.-R. & Huang, R.-Q. (1999). Chem. J. Chin. Univ. 20, 1574–1577. (In Chinese.)
- Ohba, S., Ishida, N., Kato, D., Miyamoto, K. & Ohta, H. (2005). Acta Cryst. E61, 01620-01621.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Suk, J. K., Jae, S. L., Sang, H. C., Jung, S. K. & Jae, H. L. (1997). Pestic. Sci. 51, 109.
- Yang, S., Song, B.-A., Liu, X.-H., Pang, L.-L., Jin, L.-H. & Wang, H. (2005). *Chin. J. Org. Chem.* 25, 1116–1120. (In Chinese.)