Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Ping Yang, ${ }^{\text {a }}$ Li-Jun Han, ${ }^{\text {b }}$ Da-Qi Wang ${ }^{c}$ and Hai-Tao Xia ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and ${ }^{\text {c }}$ College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail:
yangshuping@hhit.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.055$
$w R$ factor $=0.143$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E, E)-4-(Dimethylamino)benzaldehyde O-(3-phenylpropenoyl)oxime

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, the molecules are linked into a chain of $R_{2}^{1}(6)$ rings by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions; these chains are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ weak interactions, resulting in the formation of a threedimensional network.

Comment

Oxime ester derivativies exhibit a large number of biological activities, such as herbicidal (Suk et al.,1997) and anti-TMV activity (Yang et al., 2005; Ma et al., 1999). The crystal structures of various oxime ester derivatives (Brito-Arias et al., 2004; Ohba et al., 2005) have been decribed. We report here the molecular structure of a new oxime ester, (E, E)-4dimethylaminobenzadehyde O-(3-phenylpropenoyl)oxime, (I).

(I)

In the molecule of (I) (Fig. 1), the 4-dimethylaminobenzaldehyde and 3-phenylpropenoyloxy groups are situated on opposite sides of the $\mathrm{C}=\mathrm{N}$ bond, and the 4-dimethylaminobenzaldehyde oxime and phenyl groups are situated on opposite sides of the $\mathrm{C}=\mathrm{C}$ bond, resulting in a trans configuration (E, E). The dihedral angle between the benzene rings is $34.83(5)^{\circ}$. The $\mathrm{O} 1-\mathrm{N} 1$ bond length corresponds with the mean value for the $-\mathrm{O}-\mathrm{N}=$ distance in oximes (Allen et al., 1987). All other distances are also typical of their types (Table 1).

Figure 1
The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Part of the crystal structure of (I), showing the formation of a $C(6) C(8)\left[R_{2}^{1}(6)\right]$ chain of rings along b axis. For the sake of clarity, H atoms not involved in the motif shown have been omitted. [Symmety codes: (*) $x, 1+y, z$; (\#) $x,-1+y, z$.] Dashed lines indicate hydrogen bonds.

Figure 3
Part of the crystal structure of (I), viewed down the b axis, showing molecular chains linked by two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions [symmety codes: $\left(^{*}\right) \frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z ;(\#) \frac{1}{2}-x, \frac{3}{2}-y, 1-z$, (\&) $-x, 2-y, 1-z]$. Dashed lines indicate hydrogen bonds.

In the crystal structure of (I), molecules are linked into a $C(6) C(8)\left[R_{2}^{1}(6)\right]$ chain of rings (Bernstein et al.,1995) along the b axis through two weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions $\left(\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2^{\text {ii }}\right.$ and $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 2^{\mathrm{ii}}$; Fig. 2 and Table 2). Atom O 2 acts as a bifurcated acceptor, and atoms C 10 and C16 in the molecule at (x, y, z) act as hydrazone-bond donors to atom O 2 in the molecule at $(x,-1+y, z)$. Neighboring chains of molecules are connected by two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ $\left[\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2^{\mathrm{i}}\right.$ and $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\mathrm{ii}}$; symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $\left.-x+\frac{1}{2},-y+\frac{3}{2},-z+1\right]$, and one $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}\left[\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{~N} 1^{\mathrm{iv}}\right.$; symmetry code: (iv) $-x,-y+2$, $-z+1]$ weak intermolecular interactions (Fig. 3 and Table 2), resulting in a three-dimensional network structure (Fig. 4).

Figure 4
The packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

Experimental

To a solution containing 4-(dimethylamino)benzadehydeoxime $(1.60 \mathrm{~g}, 10 \mathrm{mmol})$ and anhydrous pyridine $(10 \mathrm{ml})$, a solution of 3phenylpropenoyl chloride $(1.75 \mathrm{~g}, 10 \mathrm{mmol})$ and anhydrous chloroform (10 ml) was slowly added at $278-283 \mathrm{~K}$ with stirring for 30 min . The reaction mixture was stirred continuously for 12 h at room temperature and then poured into ice-water (200 ml). The resulting solid was filtered, washed with water and dried at room temperature. Yellow crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from ethanol (m.p. 415416 K).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=294.34$
Monoclinic, $C 2 / c$
$a=23.88$ (2) A
$b=6.406(6) \AA$
$c=21.41$ (2) A
$\beta=106.092(14)^{\circ}$
$V=3147(5) \AA^{3}$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.242 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{\mu=0.08 \mathrm{~mm}^{-1}} \\
& T=298(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.58 \times 0.31 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.954, T_{\text {max }}=0.993$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.143$
$S=1.00$
2781 reflections
199 parameters

7760 measured reflections 2781 independent reflections 1160 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=25.0^{\circ}$

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0457 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.17 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 10$	$1.266(4)$	$\mathrm{N} 1-\mathrm{O} 1$	$1.453(3)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{O} 1$	$108.7(3)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{N} 1$	$113.5(2)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1$	$-178.2(3)$	$\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-172.9(2)$
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$7.3(5)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {i }}$	0.93	3.12	3.961 (5)	151
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O}{ }^{\text {ii }}$	0.93	3.14	3.737 (5)	123
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2^{\text {iii }}$	0.93	2.46	3.275 (5)	147
C16-H16 . $\mathrm{O}^{\text {iiii }}$	0.93	2.78	3.530 (4)	139
C17-H17C $\cdots \mathrm{N} 1^{\text {iv }}$	0.96	3.01	3.817 (5)	142

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{3}{2},-z+1$; (iii) $x, y-1, z$; (iv) $-x,-y+2,-z+1$.

All H atoms were positioned geometrically and refined as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ for methyl H atoms, and $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ for all other H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to
solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge financial support from the Huaihai Institute of Technology Science Foundation.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555-1573.
Brito-Arias, M. A., García-Báez, E. V., del Toro, G. V. \& Höpfl, H. (2004). Acta Cryst. E60, o1451-o1452.
Ma, Z.-H., Shao, R.-L., Ma, H.-M., Cheng, J.-R. \& Huang, R.-Q. (1999). Chem. J. Chin. Univ. 20, 1574-1577. (In Chinese.)

Ohba, S., Ishida, N., Kato, D., Miyamoto, K. \& Ohta, H. (2005). Acta Cryst. E61, o1620-o1621.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Suk, J. K., Jae, S. L., Sang, H. C., Jung, S. K. \& Jae, H. L. (1997). Pestic. Sci. 51, 109.

Yang, S., Song, B.-A., Liu, X.-H., Pang, L.-L., Jin, L.-H. \& Wang, H. (2005). Chin. J. Org. Chem. 25, 1116-1120. (In Chinese.)

[^0]: © 2006 International Union of Crystallography All rights reserved

